

"Perspektiven für die Entwicklung von Zusatzstoffen" Funktionalität und Health Claims

"Perspektiven für die Entwicklung von Zusatzstoffen" Funktionalität und Health Claims

Der Lebensmittelsektor im ZEITGEIST

Quelle: in Anlehnung an Leo A. Nefiodow: "Der sechste Kondratieff"

Der Lebensmittelsektor im ZEITGEIST

Convenience

Gesundheit

Enjoyment

Unbedenklichkeit

Conv

WEI

Genuß

Die WERTE-ORDNUNG des Konsumenten

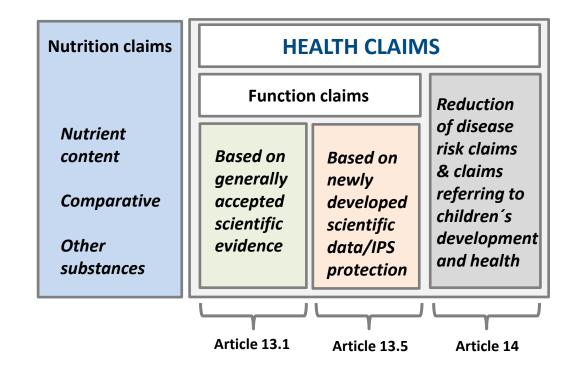
- 1. Schutz der Familie
- 2. Gesundheit und Fitness
- 3. Ehrlichkeit
- 4. Selbstverwirklichung
- 5. Freiheit
- 6. Gerechtigkeit
- 7. Selbstvertrauen
- 8. Freundschaft
- 9. Wissen
- 10. Andauernde Liebe

*57 Personal values measured

Source: 2005 Roper Reports Worldwide

Werte

Phytosterol(stanol)haltige Produkte als erste "echte" funktionelle Lebensmittel



Health claims made in relation to food products require authorisation under Regulation EC 1924/2006 before they can be used in the labelling and marketing of these products in the EU. Within the context of this authorisation procedure, EFSA's Panel on Dietetic Products, Nutrition and Allergies (NDA) is responsible for verifying the scientific substantiation of the health claims.

The publication of the final series of 35 evaluations is the culmination of more than three years' work by EFSA's experts. Since 2008 the Panel has assessed 2,758 food-related general function health claims to determine whether they were supported by sound scientific evidence, thereby assisting the European Commission and Member States in establishing a list of claims authorised for food. These approved claims can help European consumers to make more informed choices about their diet.

"EFSA's independent evaluation concluded that a considerable number of claims made on foods are backed by sound science, including claims related to a wide range of health benefits."

The outcomes of evaluations were favourable when there was sufficient evidence to support the claims. This was the case for about one in five claims reviewed, which related mainly to:

- vitamins and minerals;
- specific dietary fibres related to blood glucose control, blood cholesterol, or weight management;
- live yoghurt cultures and lactose digestion;
- antioxidant effects of polyphenols in olive oil;
- walnuts and improved function of blood vessels;
- meal replacement and weight control;
- fatty acids and function of the heart;
- the role of a range of sugar replacers (such as xylitol and sorbitol) in maintaining tooth mineralisation
 or lowering the increase of blood glucose levels after meals;
- carbohydrate-electrolyte drinks/creatine and sports performance.

Experts issued unfavourable opinions in cases where the information provided did not allow a relationship between the food and the claimed effect to be established. Reasons included:

- lack of information to identify the substance on which the claim is based (for example, claims on "probiotics", or on "dietary fibre" without specifying the particular fibre);
- lack of evidence that the claimed effect is indeed beneficial to the maintenance or improvement of the functions of the body (for example, food with "antioxidant properties" and claims on renal "water elimination");
- lack of precision regarding the health claim being made (for example, claims referring to terms such as "energy" and "vitality", or claims on women's health or mental energy);
- lack of human studies with reliable measures of the claimed health benefit;
- claims referring to food categories which were considered to be too broad, such as "fruits and vegetables" and "dairy products" to be linked to specific effects.

In weighing the evidence, the Panel

Wieviel Wissenschaft braucht der Sektor?

The world is (intends to be) evidence based !

Definitionen: Was ist Wissenschaft?

Lebens- und Weltorientierung, die auf eine spezielle (meist berufsmäßig ausgeübte) Begründungspraxis aufgebaut ist; die Tätigkeit, die das wissenschaftliche Wissen hervorbringt

(Meyers Enzyklopädisches Lexikon)

Wissenschaft fragt nach dem Warum, den Gründen und den Ursachen der Dinge (Aristoteles)

das nach Prinzipien geordnete Ganze der Erkenntnis (Kant)

Wissenschaft ist das, was anerkannte Wissenschaftler für Wissenschaft halten (Odo Marquard)

Qualitätskriterien für die Wissenschaft

Widerlegbarkeit

Widerspruchsfreiheit

Kritisierbarkeit

Prüfbarkeit

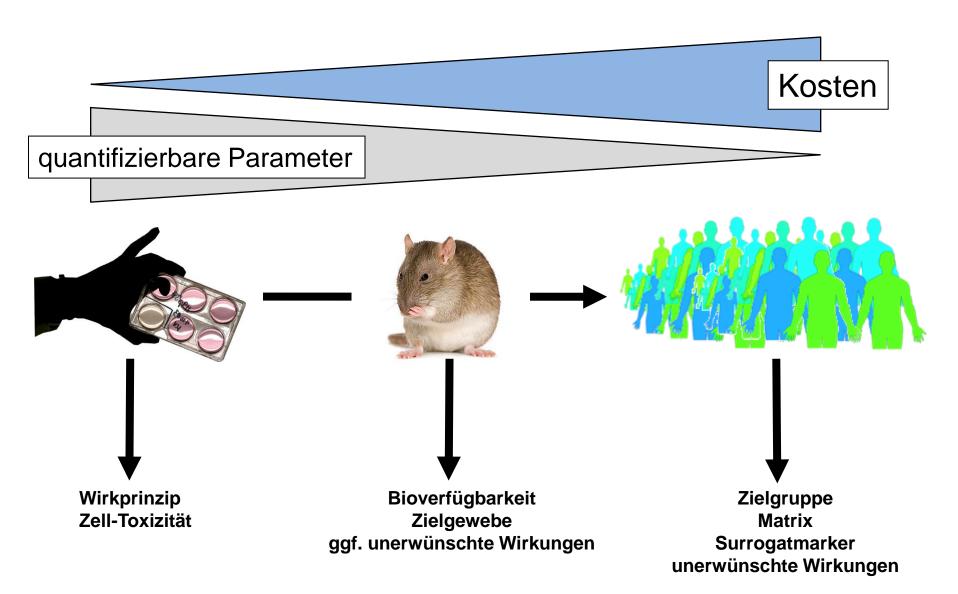
Hypothese

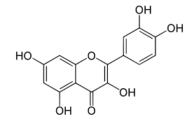
Beschreibung der Studien

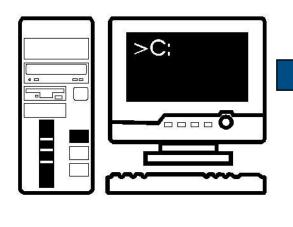
Beschreibung der Ergebnisse

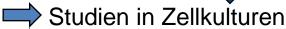
Interpretation im Kontext anderer Befunde

Kernfragen:

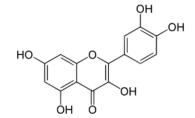

- Ist der postulierte Wirkmechanismus plausibel und durch eine hinreichende Zahl an Studien belegt?
- Gibt es eine Dosis-Wirkungsbeziehung (für den gewünschten Effekt wie für die möglichen Nebenwirkungen)?
- Wie ist die Wirksamkeit in der Lebensmittelmatrix (LM-Effekt) und ist die Verzehrmenge realistisch/plausibel?
- Welche Zielgruppe ist intendiert und wie ist die Wirksamkeit in der Zielgruppe (Risk-Benefit-Analyse)?

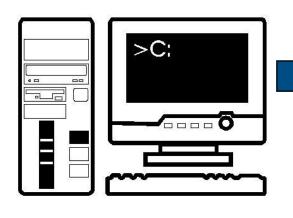

Es ist immer CASE by CASE


case by molecule case by biology case by target group



Studien in Modellorganismen


Studien in Probanden



Ableitung von Parametern zur Plausibilität des Mechanismus und zur Effektgröße (stat. Signifikanz) und damit Größe der Kohorte für notwendige Humanstudien

Wenn keine ausreichenden Informationen vorliegen, dann Substanzen mit ähnlichen physikalisch-chemischem Eigenschaften oder ähnlicher intendierter Funktionalität prüfen (Plausibilität).

Studien in Zellkulturen

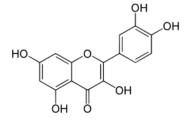
Studien in Modellorganismen

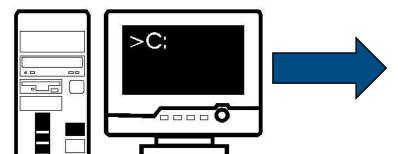
Studien in Probanden

Quercetin: 8574
Publikationen (2012)

Quercetin

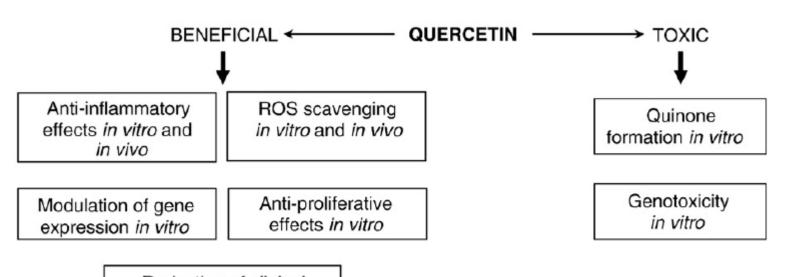
/cell: 3902


/mechanism: 727

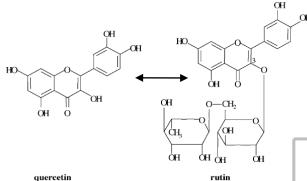

/mice: 862

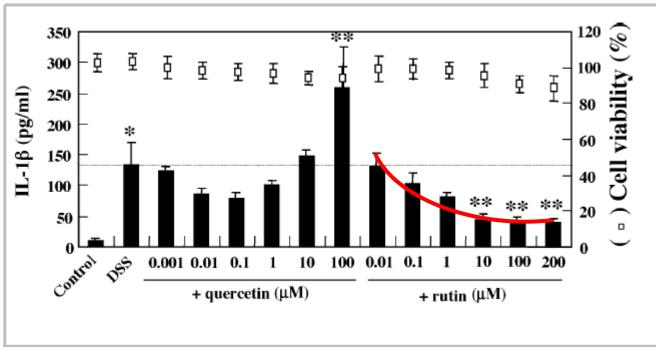
/rat: 931

/human: 3107

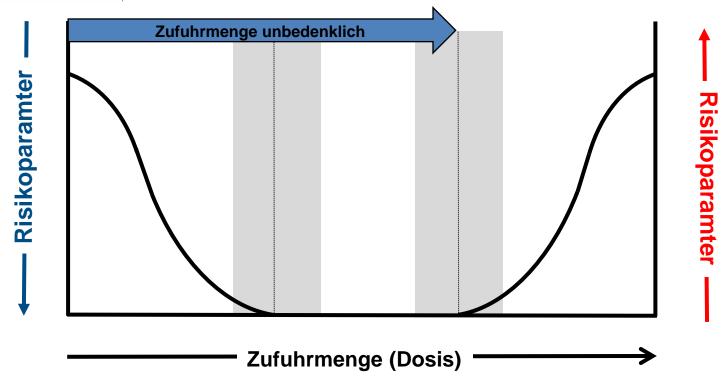


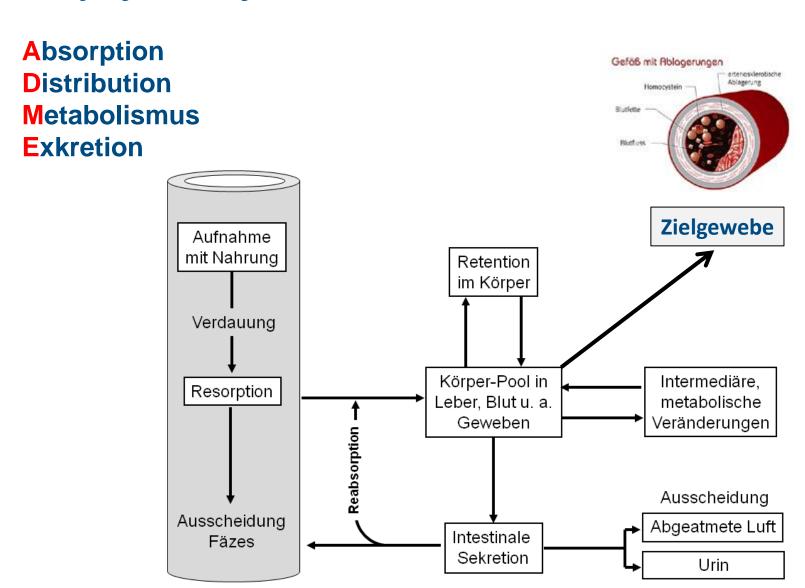
umfassende Literatursuche


Schematic overview of the beneficial and toxic effects of quercetin in vitro and in vivo.

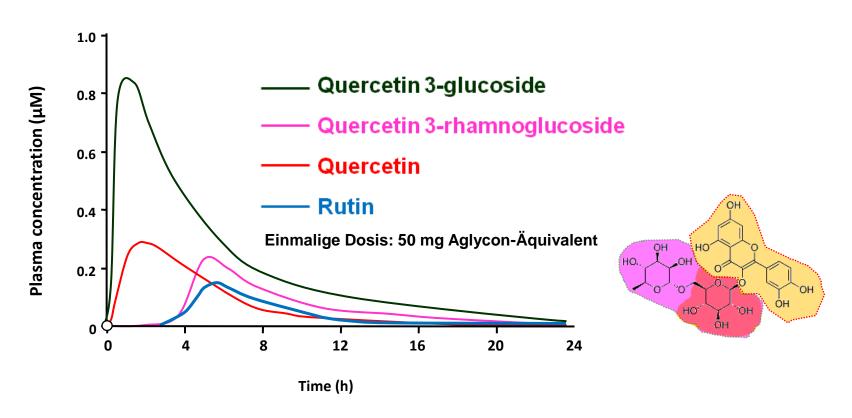

Reduction of clinical symptoms in humans

Von der Plausibilität zur Dosis-Wirkungsbeziehung

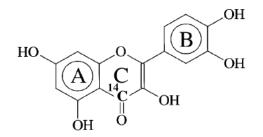


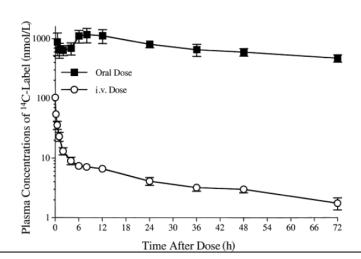


Von der Plausibilität zur Dosis-Wirkungsbeziehung



Von der Zellkultur zum Menschen: ADME Probleme

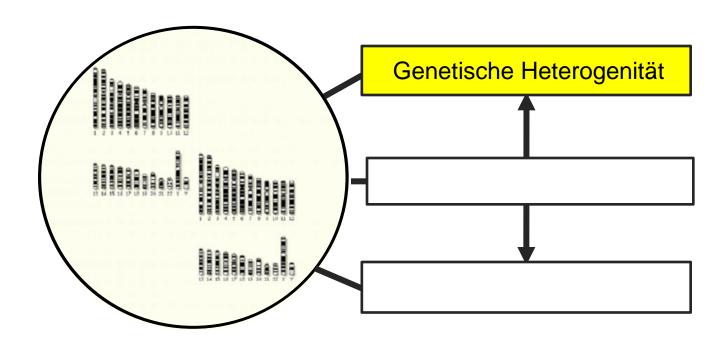

Vergleich des Resorptionsverhaltens ausgewählter Quercetine

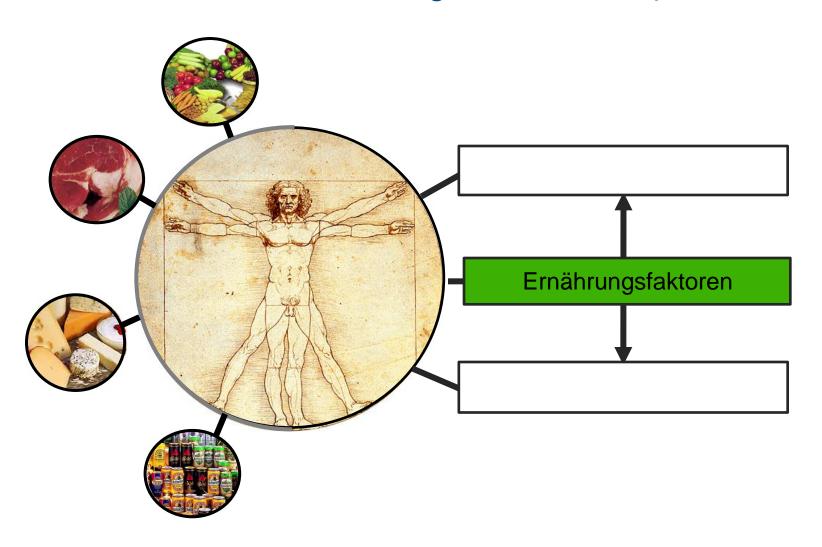


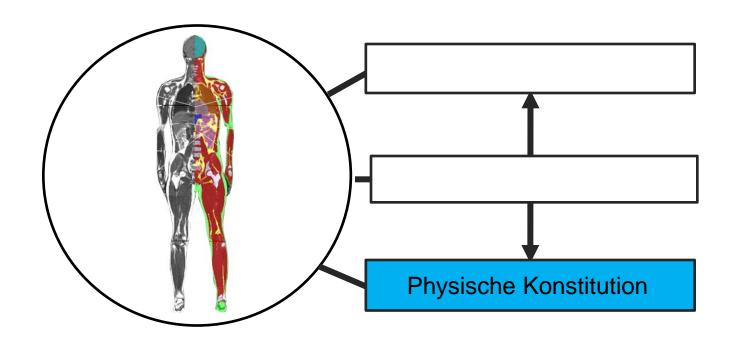
Courtesy of Claudine Manach, CHRU, Clermont-Ferrand

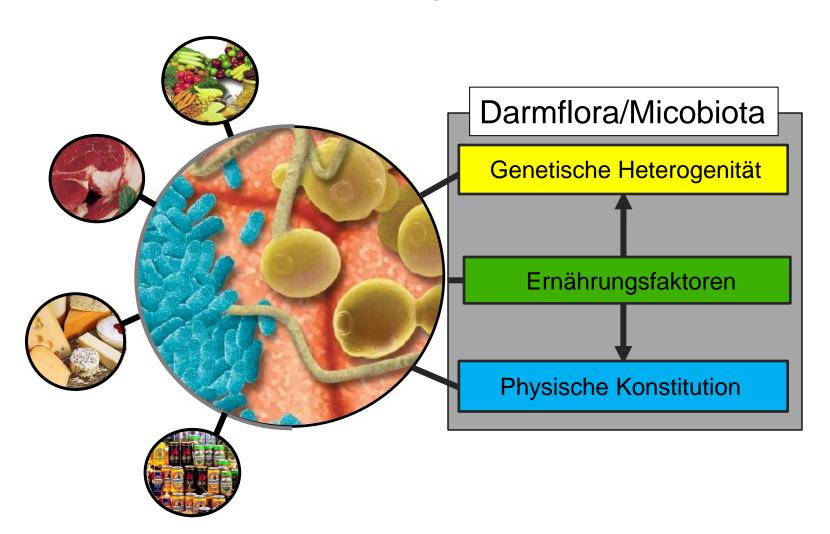
Beispiel: Bioverfügbarkeit von Quercetin beim Menschen

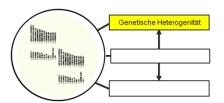
In a comparison of the two routes of administration it could be established that the oral absorption was as high as 36–54% among the six subjects studied, however, the bioavailability was close to zero.

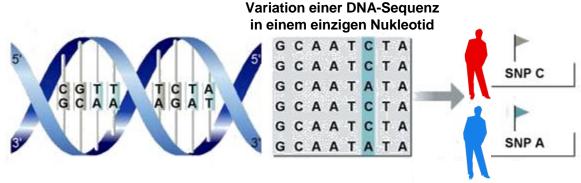

Demonstration der Funktionalität in Humanstudien


Was bestimmt die Varianz im Menschen?

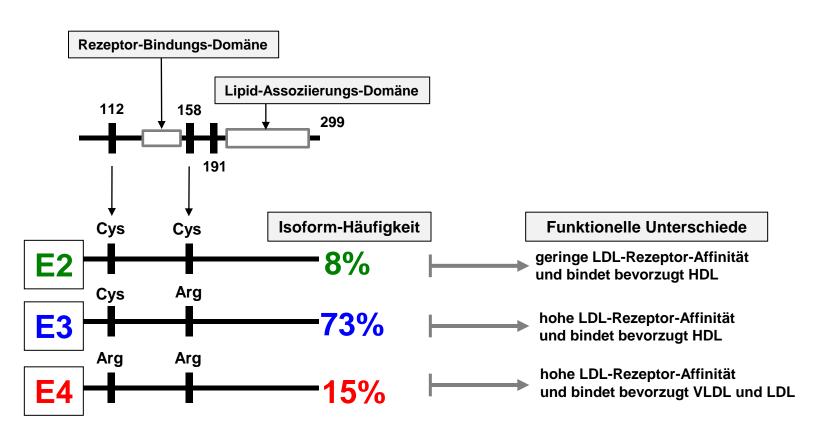

Was bestimmt die Varianz im Menschen?





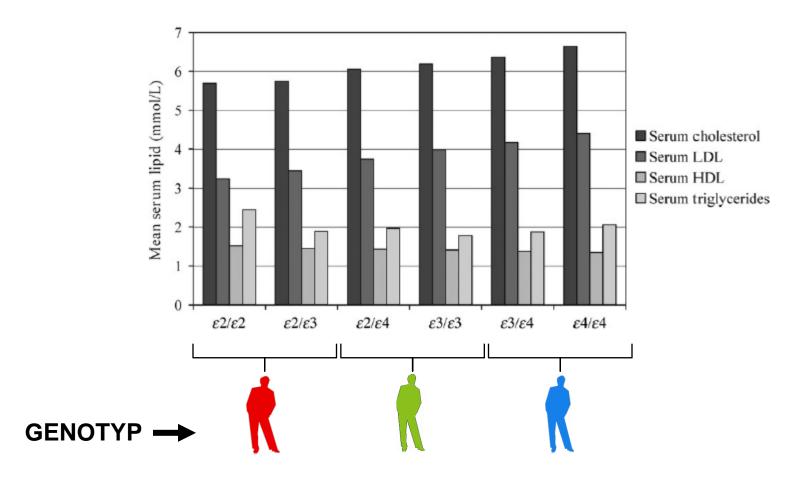


Genetische Varianz als bedeutende Einflußgröße bei der individuellen metabolischen Antwort in Interventionen


Individuen mit unterschiedlichen SNP's

Unverändert SNP

Gen: AAG-CGA-ATT-AGG → AAG-GGA-ATT-AGG
Protein: Lys -GIn -lle -Arg → Lys -Gly -lle -Arg


Genetische Varianz als bedeutende Einflußgröße bei der individuellen metabolischen Antwort in Interventionen

- The risk of AD increases with apoE4.
- >90% of those with two copies of the E4 gene will develop AD by age 80.

Genetische Varianz als bedeutende Einflußgröße bei der individuellen metabolischen Antwort in Interventionen

Apo E Genotypen und die Heterogenität metabolischer Antworten auf diätetische Interventionen

	Apo E2		Apo E3		Apo E4	
	Response		Response		Response	
Genotype	2/2	2/3	3/3	2/4	3/4	4/4
Population Frequency	1%	10%	62%	2%	20%	5%
Fish Oil ¹	↓↓TG		↓TG		↓TG	
	↓ small dense LDL		↓small dense LDL		↓↓small dense LDL	
	↑HDL		↑HDL		↓HDL ↑↑LDL	
Low Fat	↓LDL		↓↓ LDL		↓ LDL	
Diet ^{2,3}	↑small dense LDL		⇔ small dense LDL		↓ small dense LDL	
Moderate Fat	↔ LDL		↓LDL		↓LDL	
Diet ³	↔ small dense LDL		↓small dense LDL		11 small dense LDL	
Moderate Alcohol ⁴	↑HDL ↓LDL		↑HDL		↓HDL ↑LDL	
Effective Drug Response	Atorvastatin Pravastatin Lovastatin		No distinction		Probucol Simvastatin	

Minihane AM et al. Arterioscler Thromb Vasc Biol (2000) 20:1990-1997.

Masson LF et al. Am J Clin Nutr (2003) 77:1098-111.

Moreno JA et al. J Nutr (2004) 134:2517-2522.

Corella D et al. Am J Clin Nutr (2001) 73:736-45

Marques-Vidal P et al. Obes Res (2003) 11:1200-6.

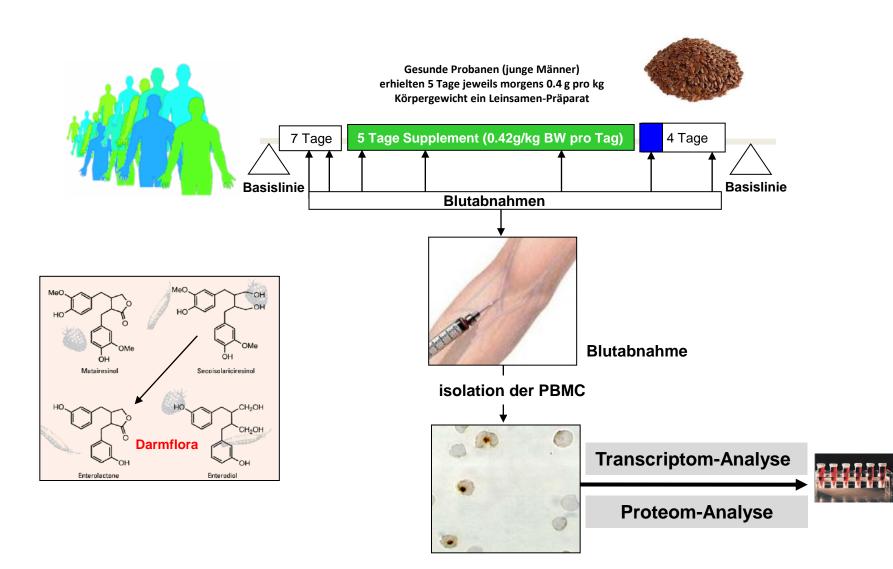
Mukamal KJ *et al.* Atherosclerosis (2004) 173:79-87

Bleich S et al. J Neural Trans (2003) 110:401-11.

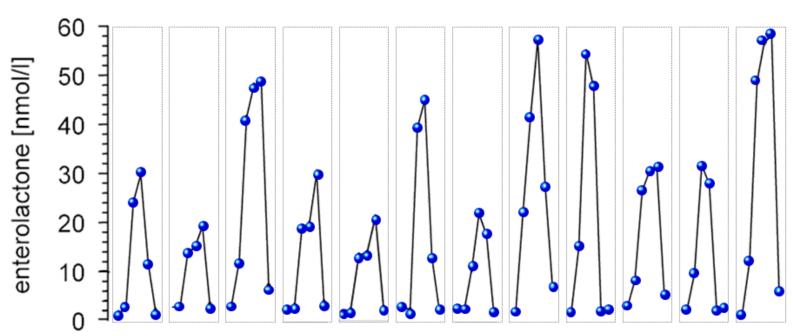
Lussier-Cacan S et al. Arterioscler Thromb Vasc Biol (2002) 1:22:824-31.

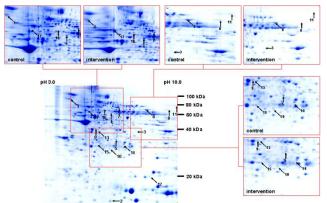
Die Bedeutung der Darmflora in der Funktionalität von Nahrungsinhaltsstoffen

Funktionelle Inhaltsstoffe **BLUT** non-responders responders Metabolische Umwandlung Analyse der Metabolite In der Darmflora im Plasma Matairesinol Enterolacton Secoisolariciresinol 0.5 Daidzein-Equol non-responders responders


Beispiele aus der eigenen Forschung

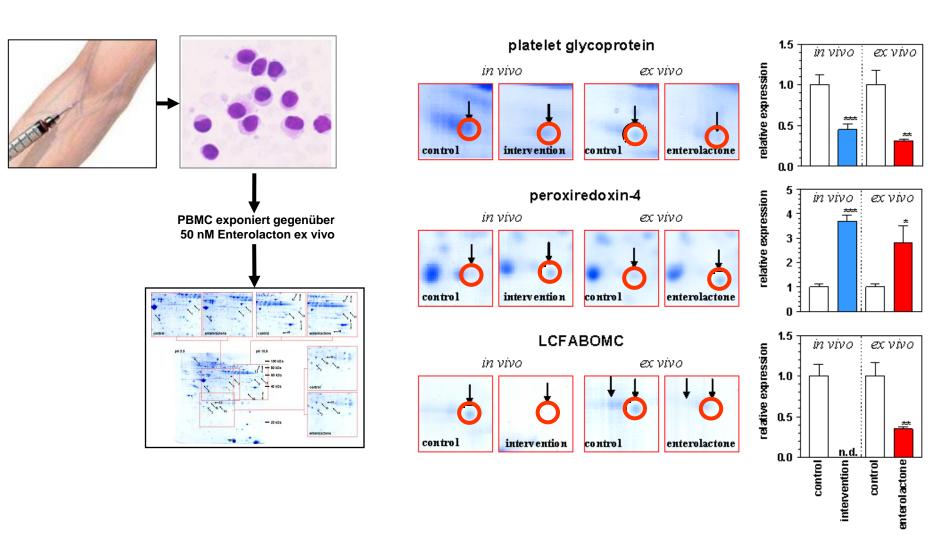
Leinsamen Interventionsstudie

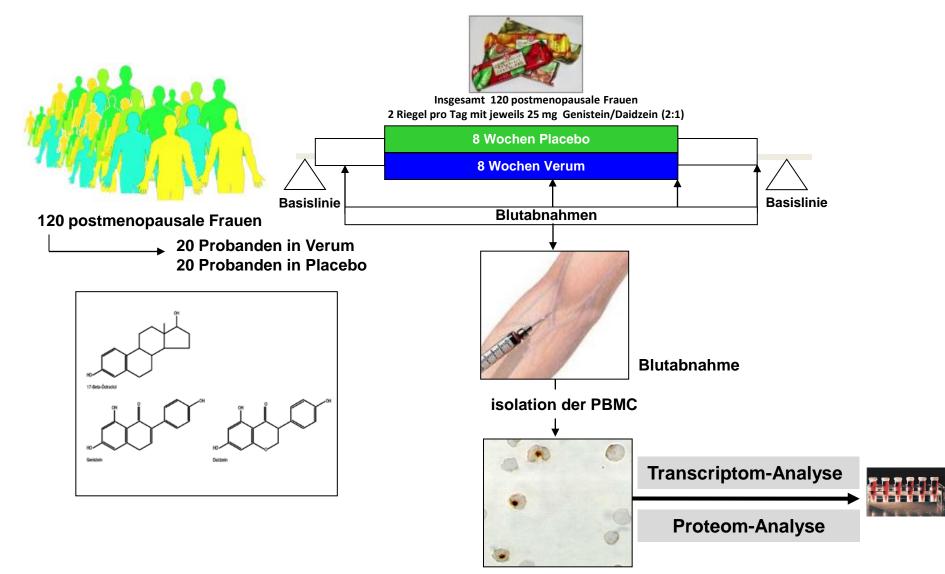

ISOHEART Interventionsstudie



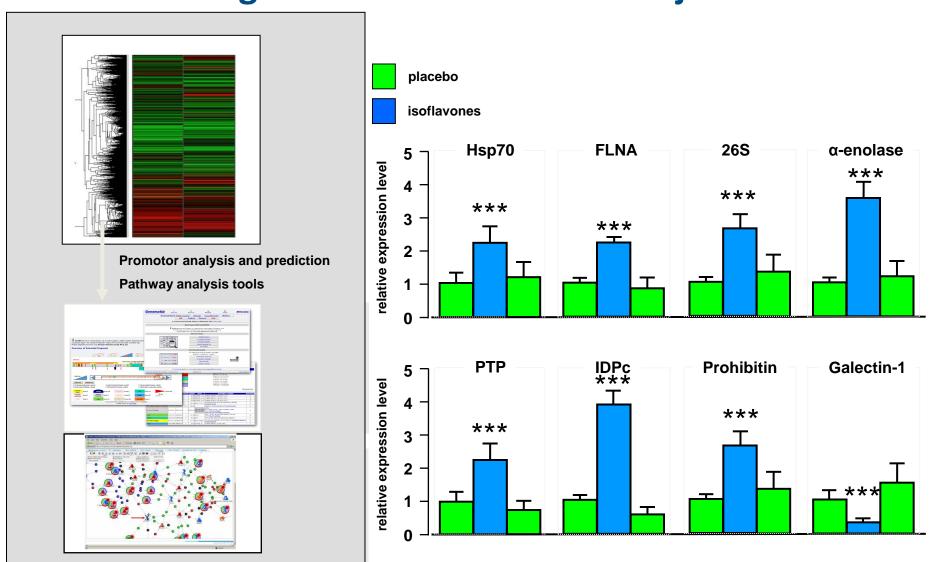
Verlauf der Blutspiegel von Enterolacton der Probanden vor, während und nach der Leinsamen-Intervention

Phase	Day	Mean (nmol/L)	SEM	Median (nmol/L)	25. Percentile	75. Percentile
Pre-phase	-7	4.8	1.5	5.5	1.4	7.2
	0	8.4	3.9	5.4	1.4	14.2
Intervention-	2	24.9	5.9	21.8	8.1	42.4
phase	3	30.4	7.0	25.7	14.7	48.5
	7	22.0	5.2	14.8	12.1	32.0
Washout-phase	21	6.2	2.0	5.3	1.5	10.6




Identifizierte Protein-Marker in PBMC

Spot	Protein description	Theoretical	Measured	Protein amount		%	Accession No
No	Protein description	M _r /p/	M _r /p/	Intervention phase/pre-phase	Washout- phase/pre-phase	Sequence- coverage	Accession No
	Chaperons						
1	Chaperonin-containing TCP-1 beta subunit homolog	96/6.4	58/6.0	2.05	0.86	36	AAC98906
2	Peroxiredoxin 4	38/5.3	31/5.9	3.70	1.05	64	Q13162
3	T-complex protein 1 subunit alpha (TCP-1-alpha)	121/5.8	61/5.8	2.01	0.95	30	P17987
4	60 kDa heat shock protein, mitochondrial precursor (hsp60)	210/4.6	61/5.7	only in intervention	n.d.	41	P10809
	Cytoskeletal proteins						
5	LIM protein	48/7.7	38/7.6	2.88	1.55	37	JC2324
6	Beta 5-tubulin	51/5.4	51/5.4	0.50	0.77	49	AAH20946
	Metabolism						
7	Pyruvate kinase isozymes M1/M2	134/8.7	58/8.0	2.04	1.84	51	P14618
8	Protein-L-isoaspartate (D- aspartate) O- methyltransferase(EC 2.1.1.77) splice form I	38/6.6	25/6.8	0.24	0.60	49	P22061
9	Long-chain-fatty-acid beta- oxidation multienzyme complex alpha chain precursor, mitochondrial	160/10.4	160/10.4	only in pre-phase	0.99	35	P 4 0939
10	Cyclophilin A	21/8.7	18/7.7	only in pre-phase	0.76	50	P62937
11	TALDO 1 protein	54/5.4	37/5.8	only in intervention	only in intervention	26	AAH18847
12	Phosphoglycerate mutase 1 (Phosphoglycerate mutase isozyme B) (PGAM-B) (BPG- dependent PGAM 1)	39/6.9	29/6.8	2.86	1.65	56	P36871
	Gene regulation						
13	Purine-nucleoside phosphorylase (EC 2.4.2.1)	47/6.9	32/6.5	2.06	1.89	62	P00491
14	Stress-induced- phosphoprotein 1	154/6.8	63/6.4	2.01	only in pre-phase	44	P31948
	Other proteins						
15	Platelet glycoprotein IIIa/II	220/4.5	86/5.0	0.45	0.52	23	B36268
16	Chain B, Crystal Structure Of Desoxy-Human Hemoglobin Beta6 Glu->trp	13/6.5	16/7.3	0.30	0.54	67	6HBWB
17	Gelsolin precursor	103/9.6	86/5.9	only in pre-phase	1.42	23	P06396



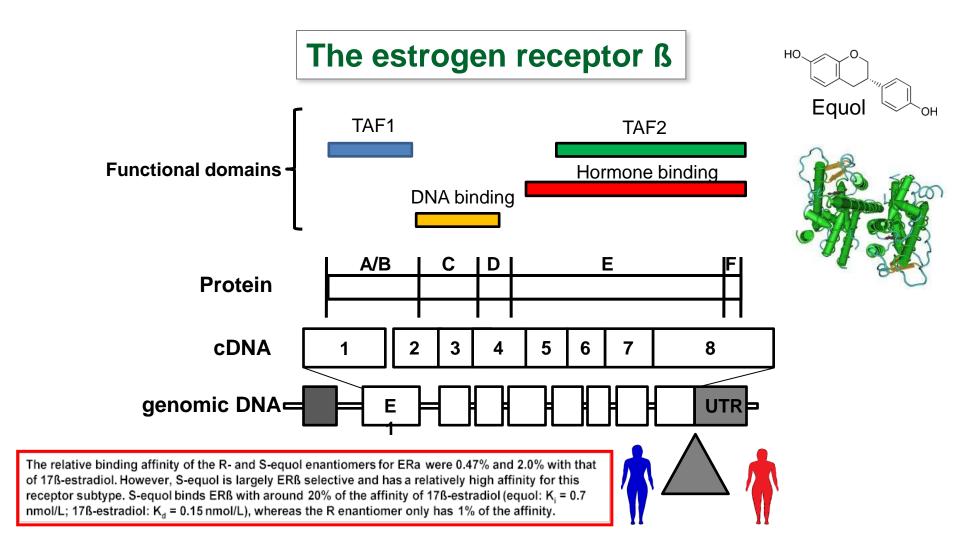
Clinical (inflammatory markers) of the volunteers undergoing isoflavone treatment

Plasma inflammatory factor concentrations at baseline (t0) and week 8 (t8) of the isoflavone and placebo intervention arms I

	Isofla	ivones	Pla		
	tO.	<i>t</i> 8	tO	<i>t</i> 8	P^2
vWF (IU/dL)	104.96 ± 53.77 [116]	105.46 ± 53.07 [116]	103.27 ± 49.46 [115]	99.99 ± 39.92 [116]	0.883
sICAM-1 (ng/mL)	215.04 ± 51.60 [116]	220.40 ± 52.77 [117]	217.45 ± 52.21 [116]	217.78 ± 48.28 [115]	0.147
sVCAM-1 (ng/mL)	504.79 ± 134.39 [114]	503.48 ± 146.66 [113]	498.14 ± 129.00 [114]	499.76 ± 135.88 [111]	0.475
E-selectin (ng/mL)	42.14 ± 15.41 [117]	42.17 ± 15.82 [117]	40.67 ± 15.05 [117]	41.26 ± 15.17 [117]	0.307
MCP-1 (ng/mL)	259.36 ± 95.93 [117]	260.43 ± 101.23 [117]	262.40 ± 85.74 [117]	260.49 ± 106.17 [117]	0.928
Endothelin-1 (pg/mL)	1.15 ± 0.39 [107]	1.20 ± 0.43 [107]	1.15 ± 0.39 [106]	$1.21 \pm 0.40 [107]$	0.800
hs-CRP (mg/L)3	1.71 ± 1.89 [114]	1.70 ± 1.89 [113]	1.64 ± 1.73 [116]	1.76 ± 1.83 [113]	0.086

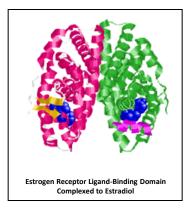
¹ All values are $\bar{x} \pm SD$, n in brackets, vWF, von Willebrand Factor; sICAM-1, soluble intracellular adhesion molecule 1; sVCAM-1, soluble vascular cell adhesion molecule 1; MCP-1, monocyte chemoattractant protein 1; hs-CRP, highly sensitive C-reactive protein.

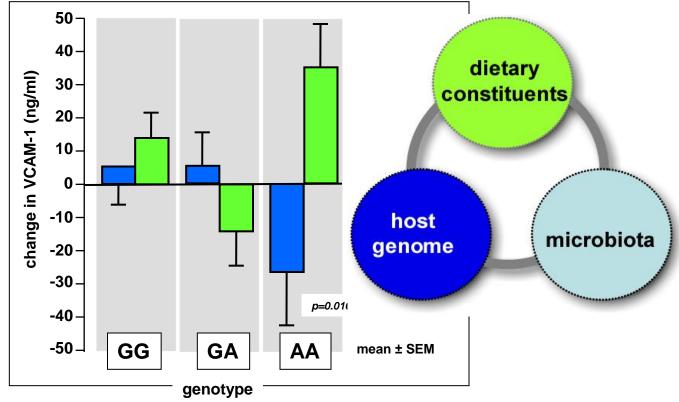
Urinary isoflavone yields at baseline (t0) and week 8 (t8) of the isoflavone and placebo intervention arms I


	Isofla	avones	Pla		
	t0	<i>t</i> 8	t0	<i>t</i> 8	P^2
Genistein (mg/d)	0.37 ± 0.40 [114]	7.27 ± 3.58 [117]	0.37 ± 0.40 [117]	0.42 ± 0.32 [117]	< 0.0001
Daidzein (mg/d)	0.16 ± 0.22 [114]	5.76 ± 2.70 [117]	0.22 ± 0.30 [117]	$0.22 \pm 0.32 [117]$	< 0.0001
Equol (mg/d)	0.08 ± 0.06 [114]	0.85 ± 1.43 [117]	$0.08 \pm 0.05 [117]$	$0.11 \pm 0.08 [117]$	< 0.0001
Equol producers ³	0.10 ± 0.05 [31]	2.61 ± 1.73 [33]	0.09 ± 0.05 [33]	$0.13 \pm 0.09 [33]$	< 0.0001
Equol nonproducers⁴	0.07 ± 0.06 [82]	0.15 ± 0.08 [83]	0.08 ± 0.05 [84]	0.094 ± 0.08 [83]	< 0.0001

¹ All values are $\bar{x} \pm SD$, n in brackets.

The relative binding affinity of the R- and S-equol enantiomers for ERa were 0.47% and 2.0% with that of 17ß-estradiol. However, S-equol is largely ERß selective and has a relatively high affinity for this receptor subtype. S-equol binds ERß with around 20% of the affinity of 17ß-estradiol (equol: $K_i = 0.7$ nmol/L; 17ß-estradiol: $K_d = 0.15$ nmol/L), whereas the R enantiomer only has 1% of the affinity.




Genetic variability as a determinant for the differences in the response to soy isoflanones

Plasma vascular cell adhesion molecule 1 (VACM-1) concentrations in the volunteers according to estrogen receptor \(\mathbb{S} A \) lul genotype and treatment

Zusammenfassung

- "Ehrliche" Produkte und tragfähige Claims gibt es nicht umsonst!
- Das sich nun "herausstellende Prinzip" in der Vorgehensweise des NDA Panels ist "fair" und folgt der Einsicht "was Wissenschaftler für Wissenschaft" halten.
- Plausibilitäten und Analogien sind nur in begrenztem Umfang übertragbar das gilt vor allem für "new chemicals"!
- Zwei Humanstudien (in der Zielgruppe) sind/sollten "minimal standard" sein"!

ABER

Zusammenfassung

- Health claims erfordern eine hohen Aufwand (im Antragsverfahren) und für den Nachweis der Sicherheit und Wirksamkeit.
- Investitionen sind mit Blick auf das "return of investment" schwer kalkulierbar.
- Es resultiert eine "Monopolisierung"; d.h., kleine und mittelständische Unternehmen sind von der Entwicklung fast ausgegrenzt (sowohl wegen know-how als auch über den finanziellen R&D Aufwand).
- Die Entwicklung hat nun aber auch Auswirkungen auf die akademische Forschung im Feld, da dass Interesse der Unternehmen sinkt und weniger PPP eingegangen werden.