Microbial ecology of the rumen: impact on nutrition and the environment

John Wallace

University of Aberdeen

"We bring together extensive capabilities and expertise in nutritional research to pursue cutting edge science almed at preventing disease and improving health through good nutrition. We aim to provide robust nutritional evidence to guide food and health policies.

Microbial ecology of the rumen: impact on nutrition and the environment

- Introduction to the rumen and its microorganisms
- Impact of the rumen on nutrition
- Ruminants and the environment
- Ruminant products and human health

The rumen

Gut anatomy

Rumen ciliate protozoa

100 μm

Rumen anaerobic fungi

50 μm

Rumen bacteria

Retungate

Proteobacteria

Cytophaga-Flexibacter-Bacteroides [CFB]

High bacterial diversity

Low G+C Gram positive

High G+C Gram positive, *Fibrobacter*, *Spirochaetes*, etc

Rumen methanogenic archaea

Microbial ecology of the rumen: impact on nutrition and the environment

- Introduction to the rumen and its microorganisms
- Impact of the rumen on nutrition
- Ruminants and the environment
- Ruminant products and human health

Fibre breakdown

Ruminococcus flavefaciens

Fibrobacter succinogenes

Protein metabolism

Breakdown of microbial protein

Rumen-up: influence on protozoal activity in vitro

Lonicera japonica (Japanese honeysuckle)

Methane, ruminants and the environment

Methane, ruminants and the environment

- How much is methane a problem as a greenhouse gas?
- Is methane from ruminants really a major part of the problem ?
- How does methane formation occur?
- How can we inhibit methane formation?
- Encapsulated fumaric acid, efficacy and commercial considerations

Greenhouse gases: CO₂

Methane as a greenhouse gas

US Environmental Protection Agency, 2000

CH₄ has a global warming potential ("radiative forcing") 21 times that of CO₂

Methane contributes approximately 18% to the overall global warming effect

Methane as a greenhouse gas

 $t_{\frac{1}{2}}$ of CH_4 in atmosphere is 12 years

Dlugokencky et al., 2003

Sources of atmospheric methane

70% of global methane formation is due to man's activities

US Environmental Protection Agency, 2001

Sources of atmospheric methane

Therefore, 20% of global methane formation is due to ruminants

US Environmental Protection Agency, 2001

Total CH, emissions in 2000 = 282.6 To CH,

Sources of atmospheric methane

And so 20% of the 18% = 3.6% of the total radiative forcing is caused by ruminants

US Environmental Protection Agency, 2001

Total CH₄ emissions in 2000 = 282.6 To CH₄

Ruminants, cars and methane

164 g CO_2 /km at 19,000 km/year = 164 × 19000 g CO_2 /year = 3 × 10⁶ g CO_2 /year

500 L CH₄/day = 365×500 L/year = 2×10^5 L/year = $2 \times 16/22 \times 10^5$ g/year = 1.5×10^5 g/year $\approx 21 \times 1.5 \times 10^5$ g CO₂/year

 $\cong 3\times 10^6\,g\ CO_2/year$

Ruminants, cars and methane

Ruminants, cars and methane

The New Zealand response

Carbon tax

As part of the Climate Change Policy Package, released in 2002, the government will be introducing a carbon tax in New Zealand from April 1, 2007. Hon. Pete Hodgson, Convener of the Ministerial Group on Climate Change, has announced that the carbon tax will be set at \$15 per tonne of CO₂ and has released a consultation paper on the implementation of the tax.

Methane production in ruminants

Methane production in ruminants

Fermentation \downarrow Protozoa, fungi, eubacteria $H_2 + CO_2$ \downarrow Archaea CH_4

Inhibition of methane formation

- Halogenated hydrocarbons
- Other chemicals
- Ionophores
- Acetogenesis
- Immunisation
- Defaunation
- Natural plant extracts
- Organic acids

Decreasing methane emission using "organic acids"

Organic acids

Bakeshure 451

Bakeshure 451 – Consists of 85% fumaric acid and 15% partially hydrogenated soybean oil

Large scale feeding trial in Aberystwyth

Health implications of biohydrogenation in the rumen

CLA in foods

CLA in foods

To provide 10 g of CLA/day requires 3.6 kg cheese

Effects on biohydrogenation of unsaturated fatty acids

Butyrivibrio fibrisolvens
Butyrivibrio proteoclasticus

19 samples with activity against *B. proteoclasticus* but not *B. fibrisolvens*

Replacing antibiotics in animal feed

EC FP6

Promotion of Safe, Healthy Food

Chrysanthemum coronarium

- C. coronarium inhibits last step in biohydrogenation process
- C. coronarium increases PUFA and CLA content of milk

Tracy's Vision of the Future

Inhibition of methane formation

Defaunation technically difficult Adaptation will always be a problem