

Biokohle

Ende der Bioraffineriekaskade oder Teil eines Wertschöpfungszyklus?

Prof. Dr. Reiner Brunsch

Kohlenstoffsequestrierung durch Menschen – seit Jahrtausenden

Terra Preta

Technische Karbonisierung

HTC-Kohle

Kohlenstofffluss in Ur-Zeiten Jahrmillionen ohne Menschen

Biosphäre Pedosphäre Lithosphäre

Kohlenstofffluss in der Vergangenheit Jahrtausende mit Menschen

Atmosphäre

Biosphäre Pedosphäre

Kohlenstofffluss in der Gegenwart 200 Jahre Industrialisierung

Atmosphäre

Biosphäre Pedosphäre Lithosphäre

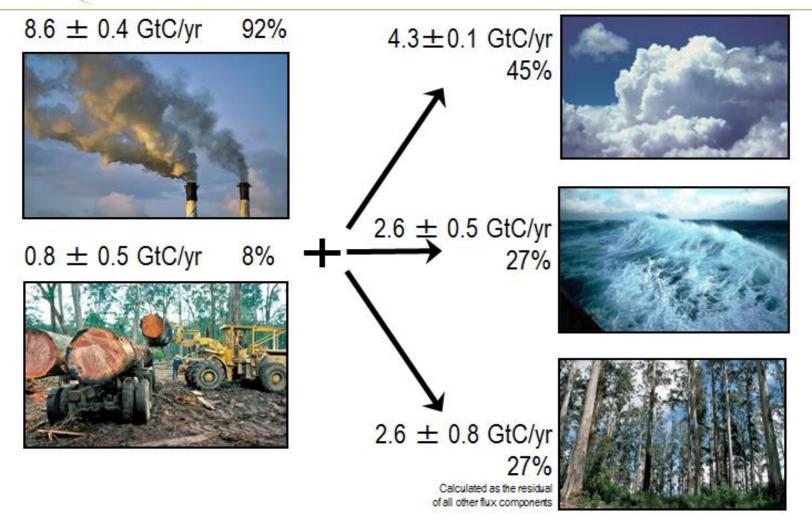
Kohlenstoff in Zahlen

- Globale Kohlenstoffmenge 75 Millionen Gt C
- Atmosphäre (393 ppmv CO₂, 2012) ca. 800 Gt C entspricht 0,001% des globalen C, empfindliche Reaktion auf veränderte Flussraten
- Hydrosphäre 38.000 Gt C entspricht 0,05% des globalen C
- Lithosphäre 99,8% des globalen C
- Bioshäre terrestrisch 800 Gt C, marine 3 Gt C zusammen 0,001% des globalen C
- Kohlenstoff ist relativ seltenes Element im Universum 0,008%
- Kohlenstoff im menschlichen Körper 10,7% 3.nach H u.O

Kurzfristiger organischer C-Kreislauf

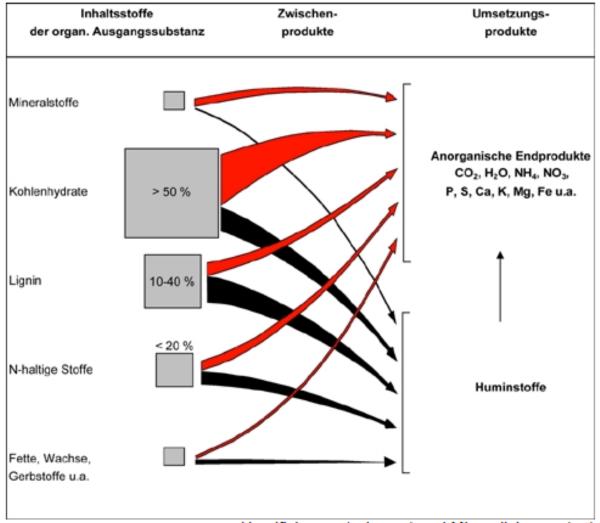
- Photosynthese, Zellatmung, Gärung
 Nettoprimärproduktion der Landpflanzen 60 Gt C/a
 Nettoprimärproduktion mariner Systeme 10 Gt C/a
- außerdem C-Freisetzung durch Tiere und Destruenten 55 bis 60 Gt C/a

daneben


 Verbrennung und veränderte Bodennutzung führte 2012 zu 9,4 Gt C-Freisetzung

Fate of Anthropogenic CO₂ Emissions (2003-2012 average)

Source: Le Quéré et al 2013; CDIAC Data; Global Carbon Project 2013



Volkswirtschaftliche Sonderrolle von Land- und Forstwirtschaft

- Potenzial für negative CO2-Bilanz
- Ertragssteigerung erhöht C-Bindung
- Ertragssteigerung verursacht u.U. höhere CO2-Emissionen
- C-Dynamik im Boden wird durch Bewirtschaftung bestimmt
- "biologisch" und "technisch" angelegte Speicher
- Lebenszyklus der Produkte aus Biomassen

Zusammenspiel von Humifizierung und Mineralisierung



Humifizierung (schwarz) und Mineralisierung (rot)

Terrestrischer Kohlenstoffkreislauf

Sustainable resource management

Mitigation of CO₂ emissions

Harvest, Processing

Conversion

Thermal conversion

Karbonisierung

Ausgangsstoffe Pflanzen Reststoffe

Pyrolyse
Vergasung
HTC

Hynpold Kohle Flüssigkeit Gase

Ausgangstoffcharakteristik (aus Libra et al. 2011)

Table 2. Feedstock properties relevant to thermal conversion processes.												
Feedstock		Woods†	Grasses [‡]	Manures	Sewage sludges			Municipal solid waste				
					Primary	Activated	Digested	Total##	Organic [§]			
Elemental analysis (%, daf)	Carbon	50-55	46-51	52-601	53.3#	-	54.4*	27-55	47-52			
	Hydrogen	5-6	6-7	6 81	7.2*		7.7*	3-9	0.63			
	Oxygen	39-44	41-46	26-361	32.0#	-	29.#	22-44	40-42			
	Nitrogen	0.1-0.2	0.4-1.0	3-61	5.3#	-	5.6#	0.4-1.8	0.16-0.25			
	Sulfur	0-0.1	<0.02-0.08	0.7-1.21	2.1*	-	3.2*	0.04-0.18	0.002-0.003			
Volatile fraction (%, db)		70-90	75-83	57-701	60-80 ⁺⁺	59-88 ^{††}	30-60++	47-71				
Ash (%, db)		0.1-8	1.4-6.7	19-311	25#	-	37.5*	12-50	0.02-0.2			
Moisture content (%, fresh weight)		5–20 (dried wood for fuel)	NR	21–99.7#	90-95††	97–99 ^{††}	88††	15-40	45–70			
, , , , , , , , , , , , , , , , , , , ,		35–60 (green wood)										
Particle size (mm	n)	NA	NA	NA	<5 (82%, wt. <0.1 mm) ⁹⁵	<1 (66%, wt. <0.1 mm)§§	<1 (61%, wt. <0.1 mm) ⁵⁵	Average**: 180–200 Range**: 0.2–600	Average ¹¹ : 180–200 Range ¹¹ : 0.2–600			
Energy content (MJ/kg _{db})		19-22	18.3-20.6	13-201	23-29 ^{††}	19-23 ⁺⁺	9-14 ⁺⁺	2-14	8.9-11.5			
†Data from soft and h	†Data from soft and hard woods (22 samples) [41].											

^{*}Biocrop grasses including energy grass pellets, poplar pannonia and tree of heaven [42].

Values estimated based on % composition values provided by [303] and elemental composition, moisture content and energy content values provided by [43].

^{*}Data from [45,46].

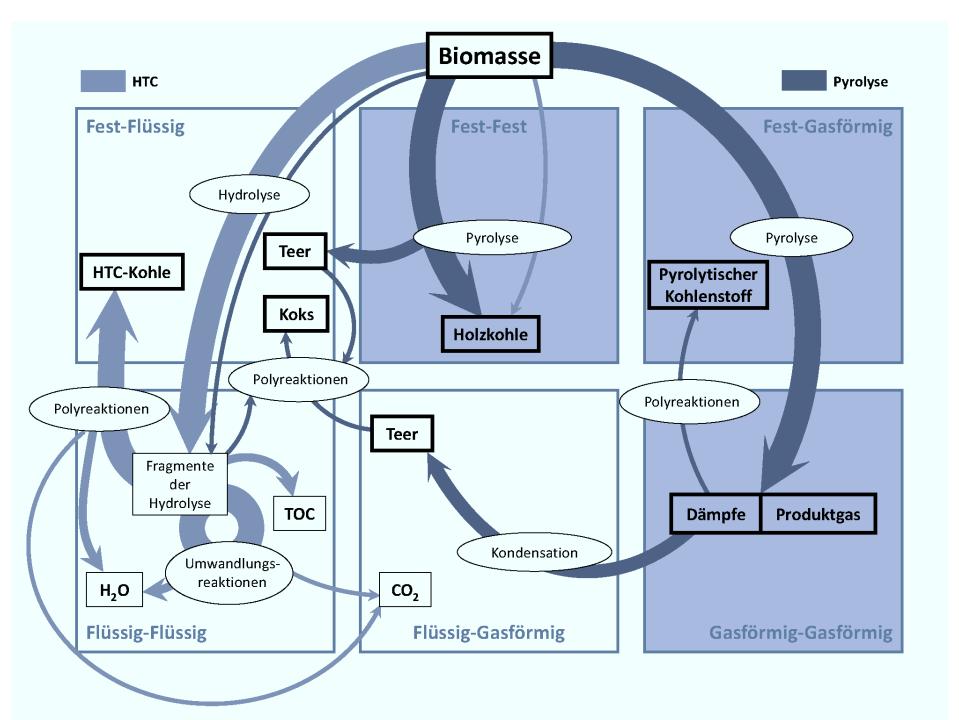
^{*}Exemplary values [47].

^{††}Moisture contents after thickening [48].

[#]Data from [304].

⁵⁵ Exemplary values for weight percent of solids with particle size less than 0.1 mm [49].

[&]quot;Neglecting bulky items. #Data from [43,44].


daf: Dry ash-free weight; db: Dry weight; NA: Not applicable; NR: Not reported.

Effekte der Karbonisierung

- Wasserabscheidung aus Zellen
- Aufspaltung organischer Verbindungen
- Erhöhung der Energiedichte
- Hygienisierung

Thermochemische Konversionsverfahren zur Herstellung von Biokohle

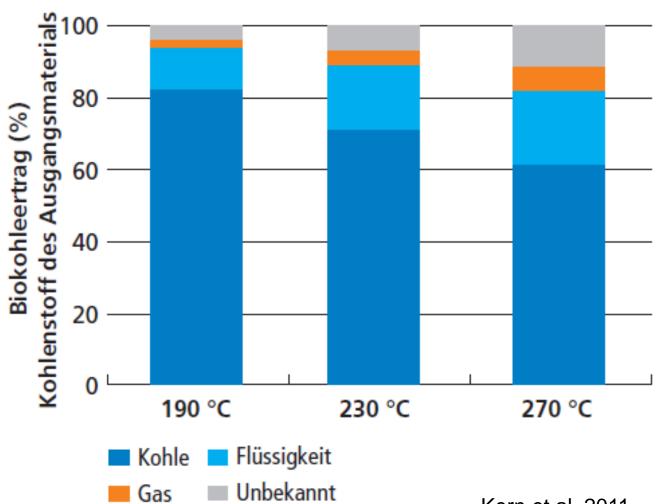
Massenanteile in Prozent

Wasserzufuhr		Sauerstoffzufuhr										
Prozesstemperatur												
< 250°C	> 250°C	~ 500°C	< 600°C	> 600°C	> 700°C							
Hydrothermale Karbonisierung	Langsam	Pyrolyse Mittel	Schnell	Vergasung	Verbrennung ¹							
HTC-Kohle 50-80	Biokohle 35	Biokohle 20	Biokohle 12	Biokohle 10	Asche CO ₂ , Wasser							
			Bio-Öle 75	Bio-Öle 5								
		Bio-Öle 50	/5	Gase 85								
	Bio-Öle 30											
	Gase 35	Gase										
Bio-Öle 5–20	- 33	30										
Gase 2-5			Gase 13									

Teichmann (2014)

1 Bei der Verbrennung entsteht keine Biokohle. Sie ist nur zum Vergleich dargestellt.

Quellen: Quicker, P. et al. (2012), a. a. O.; Libra, J. A. et al. (2011), a. a. O.; Darstellung des DIW Berlin.


© DIW Berlin 2014

Prozessführung und Produktbeschaffenheit

Abb. 4: Kohlenstoffertrag in der HTC-Kohle aus Gärresten in Abhängigkeit der Reaktionstemperatur

Problematische (Neben)Produkte?

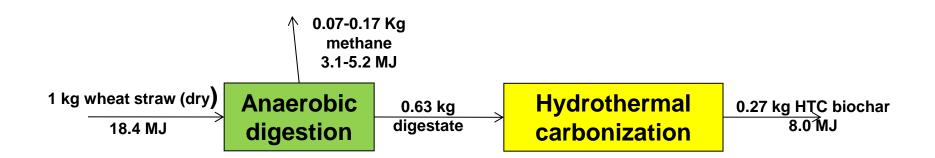


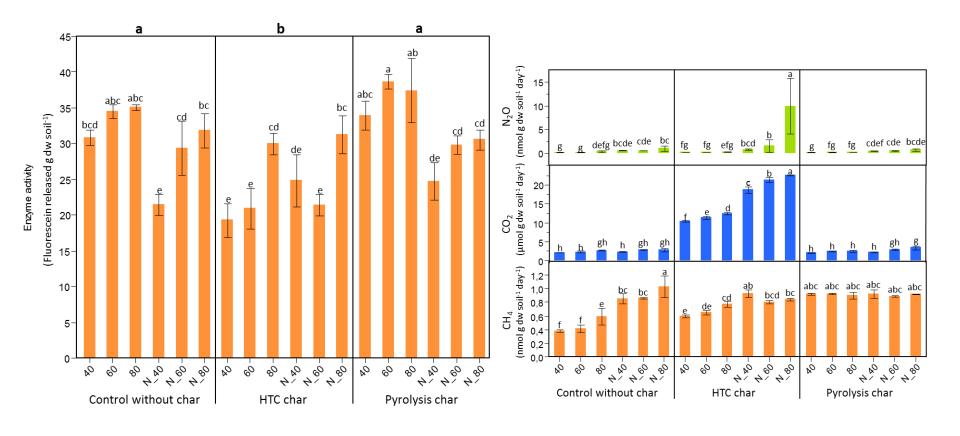
Figure 4. Concentrations of selected compounds in the water phases obtained after hydrothermal carbonization of various feedstocks for 6 h at different temperatures (HPLC-DAD, means and standard deviations, n = 3).

Gekoppelte Prozesse

Biogas und HTC

Nutzungsmöglichkeiten von Produkten der Karbonisierung

- Energieträger/Brennstoff
- Grundstoffe für chemische Industrie
- Katalysator/Trägermedium
- Bodenhilfsstoff, Kultursubstrat, Torfersatz
- Kohlenstoffspeicher
- Produktion von Nanomaterialien (u.a. für medizinische Zwecke)
- Komponente in Batterien und Brennstoffzellen
- Bestandteil elektrochemischer Kondensatoren
- Ausgangsstoff für die Herstellung von Kohlefasern, Plaste
- Kosmetik (Seife, Hautcreme, therapeutischer Badezusatz)
- Farbstoffe (Lebensmittelfarbstoff, Industriefarben)
- Textilien (Gewebezusatz und Wärmeisolation für Funktionswäsche
- Pflanzenschutz
- Pelletierung von Saatgut
- Bindemittel für Trockentoiletten
- Isolationsmaterial und Wandbeschichtung

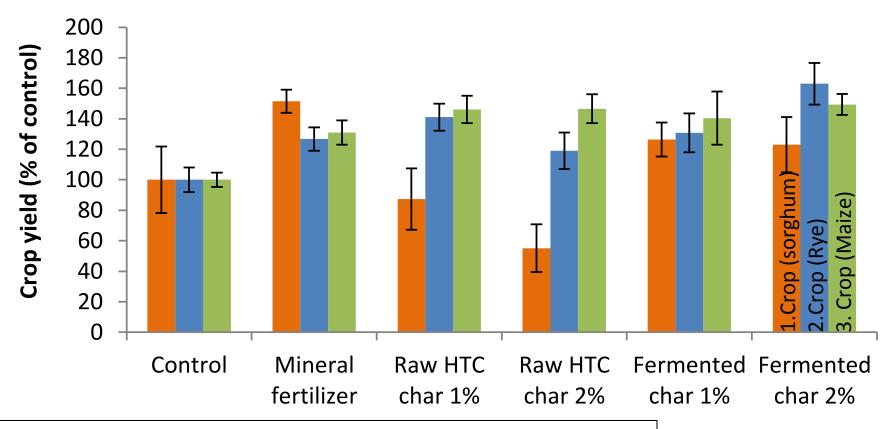

Wirkung von Kohlen im Boden

- Effekte von physikalischen Eigenschaften (Bodenstruktur und -wasserhaushalt, etc.)
- chemische Eigenschaften(Kohlenstoff- und Nährstoffhaushalt, pH-Wert, Sorptionskapazitäten)
- mikrobielle Aktivitäten und Bodenorganismen
- Schadstoffgehalte sowie deren Umsetzung und Retention in Böden
- Vitalität, Gesundheit und Wachstum von Pflanzen
- Ertragspotenzial

Beeinflussung der Mikro-Biota

Enzymaktivität

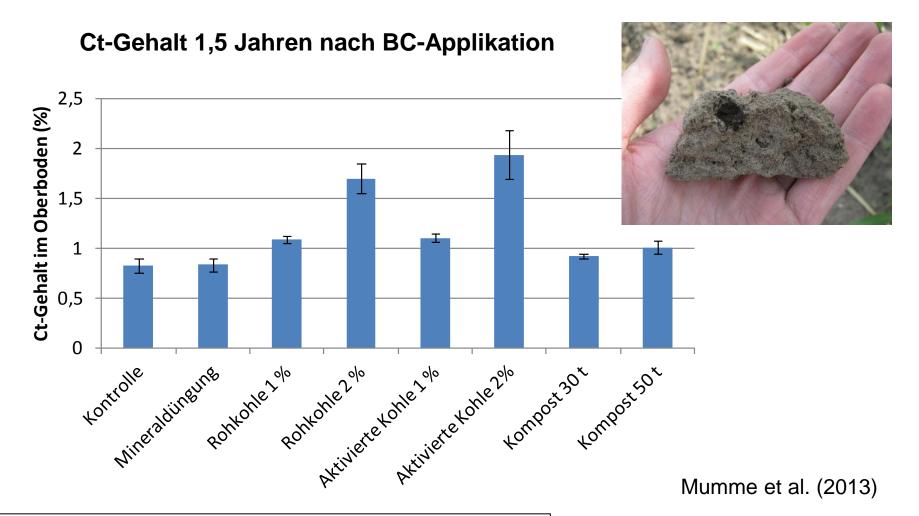
Treibhausgasemissionen


Feldversuche

Ertragsbildung bei Einsatz von HTC-Kohlen

Biochar effect on crop yield compared to fertilizer only:

-> 1. Crop: mean 65 % (Fermented char: 82 %)


-> 2. Crop: mean 109 % (F-Char: 116 %)

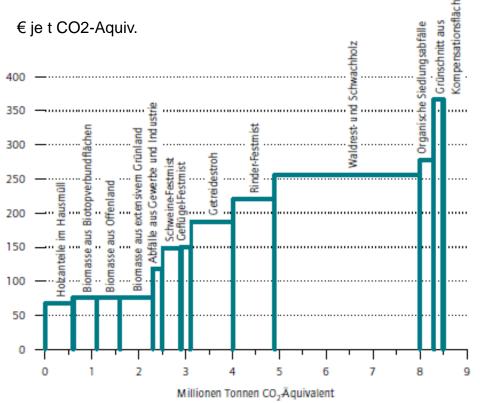
-> 3. Crop: mean 111 % (F-Char: 111 %)

Kohlenstoffspeicher

⇒C-Anreicherung nach BC-Applikation möglich

Ökonomische Bewertungen

- Stoffströme, Potenzialanalysen
- Märkte
- Kosten-Nutzen-Betrachtungen
- finanzielle Anreize (Agrarförderung, Emissionshandel)
- Treibhausgasvermeidungskosten


Treibhausgasvermeidungskosten

- Bisher fast ausschließlich Daten zu Pyrolysekohlen
- Starke Abhängigkeit vom Wassergehalt bei Pyrolyse (Trocknungskosten)
- Wegfall der Trocknung spricht für HTC
- Unsicherheiten bei Stabilitätsbewertungen
- Kosten bei Pyrolyse (Teichmann, 2014)
 - Waldrest- und Schwachholz 256 €/t CO2-Äquivalent
 - Biomasse aus Offenland 76 €/t CO2-Äquivalent
 - Biomasse aus extensivem Grünland 76 €/t CO2-Äquivalent
 - Klärschlamm 4024 €/t CO2-Äquivalent
 - Geflügel-Festmist 151 €/t CO2-Äquivalent
 - Aber auch Szenarien mit negativem Vermeidungspotenzial

Grenzvermeidungskostenkurve möglicher (Pyrolyse)Biokohle-Optionen in D 2030

Gut 2,3 Millionen Tonnen CO2 können zu Kosten von unter 100 Euro je Tonne CO2-Äquivalent vermieden werden.

1 Es sind nur Optionen mit Vermeidungskosten unter 400 Euro je Tonne CO.-Äquivalent dargestellt. Nicht abgebildet sind somit Biokohlen aus Klärschlamm sowie aus Gärresten von Energiepflanzen (Mais). Außerdem sind Optionen mit negativer Emissionsvermeidung nicht berücksichtigt (Industrierestholz, Pappeln und Weiden, Gülle, Ernterückstände).

Quelle: Berechnungen des DIW Berlin.

Teichmann (2014)

Verantwortung

Freisetzen und Festlegen von C

Fazit

Biokohle - Ende der Bioraffineriekaskade oder Teil eines Wertschöpfungszyklus?

- Sowohl als auch!
- Viele offene Fragen
- Beachtliche Potenziale
- Teils unbekannte Risiken
- Notwendiger Wertewandel für nachhaltiges Handeln

Dank an Mitarbeiter und Forschungspartner

Judy Libra, Jan Mumme, Jürgen Kern, Andreas Meyer-Aurich, Toufiqur Reza, Janet Andert

und -prüfung

Danke für Ihre Aufmerksamkeit

